Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography
نویسندگان
چکیده
Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.
منابع مشابه
Tunneling dynamics in multiphoton ionization and attoclock calibration.
The intermediate domain of strong-field ionization between the tunneling and multiphoton regimes is investigated using the strong-field approximation and the imaginary-time method. An intuitive model for the dynamics is developed which describes the ionization process within a nonadiabatic tunneling picture with a coordinate dependent electron energy during the under-the-barrier motion. The non...
متن کاملStrong Field Approximation for Systems with Coulomb Interaction
A theory describing above-threshold ionization of atoms and ions in a strong electromagnetic field is presented. It is based on the widely known strong field approximation and incorporates the Coulomb interaction between the photoelectron and the nucleus using the method of complex classical trajectories. A central result of the theory is the Coulomb-corrected ionization amplitude whose evaluat...
متن کاملPhase Structure of Strong-Field Tunneling Wave Packets from Molecules.
We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of...
متن کاملDynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering
Strong-field photoelectron holography and laser-induced electron diffraction (LIED) are two powerful emerging methods for probing the ultrafast dynamics of molecules. However, both of them have remained restricted to static systems and to nuclear dynamics induced by strong-field ionization. Here we extend these promising methods to image purely electronic valence-shell dynamics in molecules usi...
متن کاملCoulomb focusing at above-threshold ionization in elliptically polarized mid-infrared strong laser fields
The role of Coulomb focusing in above-threshold ionization in an elliptically polarized mid-infrared strong laser field is investigated within a semiclassical model incorporating tunneling and Coulomb field effects. It is shown that Coulomb focusing up to moderate ellipticity values (ξ ∼ 0.3) is dominated by multiple forward scattering of the ionized electron by the atomic core that creates a c...
متن کامل